Uniprot

- 1) Search in UniprotKB the records regarding insulin and report:
 - a) how many record are found;
 - b) how many entries are from Swiss-Prot?
 - c) the accession code for the human protein (INS gene);
 - d) the number of the references inside the previous record;
 - e) where in the cell/outside the cell you can find insulin;
 - f) the length of the signal peptide and the propeptide, respectively;
 - g) which type of variants (mutations) of insulin have been described;
 - h) which variant is related to diabetes mellitus type-II and the references that have been published on it.
- 2) Find the human muscle 6-phosphofructokinase in Uniprot and, of this protein report:
 - a) the gene name and its accession code;
 - b) how many alternative products are present and their lengths;
 - c) how many references regards this protein;
 - d) the accession code of the mRNA and protein reference sequences;
 - e) the length of the mRNA and coding reference sequences.
- 3) Explain the differences between the previous records found in RefSeq and in Uniprot. Moreover, defects in the previous protein cause a human disease of which report:
 - a) the accession number of the OMIM record;
 - b) the inheritance transmission;
 - c) the MIM number, name and the chromosomal localization of the related gene;
 - d) the number and the type of allelic variants associated to that disease.
- 3) Using UniprotKB, find the records regarding human Bombesin receptor subtype 3. Report:
 - a) how many records you find;
 - b) their accession codes;
 - c) the different kind of information you expect to find inside the record;
 - d) the accession code of the mRNA and protein reference sequences of the reviewed protein.
- 4) Report how many records are present in UniprotKB/SwissProt regarding Aurora kinase A. Restrict the data base sequence redundancy at 50% and reviewed sequences and report the cluster accession code, the accession code and organisms of the sequences grouped inside the cluster.